Efficient production of bioactive insulin from human epidermal keratinocytes and tissue-engineered skin substitutes: implications for treatment of diabetes.
نویسندگان
چکیده
Despite many years of research, daily insulin injections remain the gold standard for diabetes treatment. Gene therapy may provide an alternative strategy by imparting the ability to secrete insulin from an ectopic site. The epidermis is a self-renewing tissue that is easily accessible and can provide large numbers of autologous cells to generate insulin-secreting skin substitutes. Here we used a recombinant retrovirus to modify human epidermal keratinocytes with a gene encoding for human proinsulin containing the furin recognition sequences at the A-C and B-C junctions. Keratinocytes were able to process proinsulin and secrete active insulin that promoted glucose uptake. Primary epidermal cells produced higher amounts of insulin than cell lines, suggesting that insulin secretion may depend on the physiological state of the producer cells. Modified cells maintained the ability to stratify into 3-dimensional skin equivalents that expressed insulin at the basal and suprabasal layers. Modifications at the furin recognition sites did not improve proinsulin processing, but a single amino acid substitution in the proinsulin B chain enhanced C-peptide secretion from cultured cells and bioengineered skin substitutes 10- and 28-fold, respectively. These results suggest that gene-modified bioengineered skin may provide an alternative means of insulin delivery for treatment of diabetes.
منابع مشابه
Isolation and in vitro cultivation of human skin Keratinocytes and preparation of epidermal sheet
متن کامل
MM.06.018 Bio Engineered Skin and Soft Tissue Substitutes 070114
Bio-engineered skin and soft tissue substitutes may be either acellular or cellular. Acellular products (i.e., cadaveric human dermis with cellular material removed) contain a matrix or scaffold composed of materials such as collagen, hyaluronic acid, and fibronectin. Cellular products contain living cells such as fibroblasts and keratinocytes within a matrix. The cells contained within the mat...
متن کاملIsolation and Cultivation of Adult Human Keratinocyte Stem Cells for Regeneration of Epidermal Sheets
Background: Keratinocyte stem cell is one of the adult stem cells that inhabits the skin and contributes to skin function and renewal. Adult stem cells are best defined by their capacity to self-renew, and to maintain tissue function for a long period of time. These findings indicate the importance of these cells for clinical applications including regenerative medicine, tissue engineering and ...
متن کاملTissue-Engineered Skin Substitutes - 06/12
Tissue-engineered skin substitutes may be either acellular or cellular. Acellular products (i.e., cadaveric human dermis with cellular material removed) contain a matrix or scaffold composed of materials such as collagen, hyaluronic acid, and fibronectin. Cellular products contain living cells such as fibroblasts and keratinocytes within a matrix. The cells contained within the matrix may be au...
متن کاملComparison of therapeutic antibiotic treatments on tissue-engineered human skin substitutes.
For regenerative medicine to gain clinical acceptance, the effects of commonly used treatment regimens on bioengineered organs must be considered. The antibiotics mafenide acetate (mafenide) and neomycin plus polymyxin (neo/poly) are routinely used to irrigate postoperative skin grafts on contaminated wounds. The effects of these clinically used antibiotics were investigated using tissue-engine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Tissue engineering
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2007